
International Journal of Research in Engineering and Science (IJRES)

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356

www.ijres.org Volume 3 Issue 4 ǁ April. 2015 ǁ PP.49-58

www.ijres.org 49 | Page

Optimal Data Collection from a Network using Probability

Collectives (Swarm Based)

Abdulkadir Ahmed
1
, Olalekan Ogunbiyi

2
,

Tahir Aduragba

3

1
(Electrical and Computer Engineering, Kwara State University, Malete, Nigeria)

2
(Electrical and Computer Engineering, Kwara State University, Malete, Nigeria)

3
(Electrical and Computer Engineering, Kwara State University, Malete, Nigeria)

ABSTRACT: This paper contains the implementation of the BeeAdhoc algorithm for data routing in mobile Ad

Hoc Network (MANet). The algorithm was inspired by the foraging behaviour of honey bees and its

implementation mimics this behaviour. The integration was done on Network Simulator version 2 (NS-2.34)

where different scenarios were considered in comparison with other existing state-of-the-art routing algorithms

that have been implemented in the chosen simulator. The comparison was carried out between DSR, DSDV,

AOMDV which are all multipath routing algorithms as the BeeAdhoc; this gave a better insight to the different

behaviour of the algorithms on a common application environment. Throughput, end-to-end delay and routing

overhead constitute the indices used for the performance evaluation. Experimental results showed the best

performance of BeeAdhoc over, DSDV and AOMDV algorithms.

Keywords -BeeAdhoc, Network simulator, Probability collective, Routing, Swarm

I. INTRODUCTION
The Collective Intelligence (COIN) emerged in the technical report submitted to National Aeronautics and

Space Administration (NASA) by Wolpert and Tumer and in which they referred to it as any combination of

large, distributed collection of interacting computational processes in which there is little or no centralized

communication/control, together with a „global utility‟ function that rates the possible dynamic histories of the

collection [1].

Collective can be described as a group of self-motivated agents that maximise overall system performance

through improving on their local objectives [2, 3]. Probability Collectives (PC) is a framework of COIN used in

the modelling and control of distributed systems, its concept has been linked to Game theory, statistical physics

and optimization [4].

The approach of PC is an efficient means of sampling the joint probability space in order to convert the

problem under consideration into a convex space of probability distribution [2]. Approach of COIN is to design

a collective whereby every section is seen as an agent which gives an overall view of the system as a Multi-

Agent-System (MAS) [5].

Probability Collective (PC) as implemented in the COIN framework, allows each of the agents to select

actions from a group of available actions and receive reward based on the achieved objective due to the taken

action. The approach is an iterative one and reaches equilibrium in which at some point the agent‟s reward do

not increase any more for taking any action further. This equilibrium concept is known as Nash Equilibrium [3,

5, 6, 7]. According to [6, 7, 8] the advantages that could be derived from the use of PC include: It can be used to

solve problems with large number of variables, it can be used to handle constrained problems, it is a distributed

solution approach in which agents independently updates their probability distribution at any time instance and

can be applied to continuous, discrete or mixed variables, a failed agent can just be considered as one that does

not update its probability distribution and this do not have any effect on the other agents, the minimum value of

the global cost function can be derived by considering the Maxent Lagrangian equation for each agent. In view

of the above, a swarm-based system approach which focuses on honey bee behaviours was implemented in this

research.

The focus area for this research was on Ad-Hoc wireless network with mobility (MANet); an ad-hoc

network could be described as a network without any form of central control among the nodes, that is, no

installed infrastructure like routers are required. In this kind of setup the nodes serve as partial router and aid in

routing of information. This research implemented a swarm based system in routing data and comparing with

existing approaches.

The problem to be addressed in this work is that of routing and information collection in a network. This

includes the execution time of algorithms and its accompanying protocols, propagation delay, throughput and

energy consumption.

In response to the issues identified above, objectives were: to identify an appropriate modification to be

made to the algorithm, to implement the algorithm with an appropriate network protocol for simulation. It also

Optimal Data Collection from a Network using Probability Collectives (Swarm Based)

www.ijres.org 50 | Page

includes the incorporation of one or combination of the following features: improved resilience (i.e. faster

recovery from node/link failure), reduced energy consumption, higher throughput, and minimised execution

time.

1.1 Swarm intelligence

Swarm intelligence is the study of computational systems inspired by the „COllective INtelligence‟ (COIN).

COIN emerges through the cooperation of large numbers of homogeneous agents in the environment [9].

Literally, Swarm systems are those which mimic the behaviours of animals in optimising/solving real life

problems through simulations. Examples include schools of fish, flocks of birds, and colonies of ants. These

systems are decentralized, self-organizing and distributed in a problem domain [10]. Examples include Particle

Swarm Optimisation, Ant Colony Optimisation, Bacterial Foraging Optimisation and Bee Colony Optimisation.

Swarm based systems have been used to solve optimisation problems ranging from salesman problem to

routing of packets in data network. This research focused on the Honey Bee behaviour in the routing of packet

in a Mobile Ad Hoc Network.

The study of bee behaviour for optimisation processes did not kick off early enough because researchers do

not understand how information is being disseminated in the beehive. This became history when Nobel Laureate

„Karl Von Frisch‟ broke the jinx and structured it into a language in his book The Dance Language and

Orientation in Bees. He elaborated and explained the meanings of the dances given by the bees after each flight

back to the hive and after this, several works relating to the bee behaviour have been embarked upon.

BeeHives is one of the earliest works described in [11] that uses the honey bee behaviour to optimise the

energy consumption in routing of data in a wired data network. The work was compared with existing swarm

based system (AntNet, Distributed Genetic Algorithm (DGA)) using the Japanese Internet Backbone

(NTTNET) in OMNeT++ network simulator and was found to outperform others in most of the simulated

scenarios [11]. In the work, it was said that “Honey bees evaluate the quality of each discovered food site and

only perform a waggle dance for it on the dance floor if the quality is above a certain threshold” [11]. The dance

is abstracted into a routing table and it is used to keep track of the information received through all bees sent out

that arrives from different neighbours. Two types of bee agents are defined are short distance bee agent and

long distance bee agent; this was based on the study which revealed that more bees explore areas closest to the

hive and few going farther from the hive for exploration [11].

Short distance bee agent are only allowed to traverse few hops away from it node in gathering and

disseminating information to neighbouring nodes while the long distance bee agent can travel to all parts of the

network. The implementation assume network to be in partitions which results from the network topology as

foraging zones and foraging regions. Based on this, each node maintains information in its routing table about

routes that allow it communicate with all its zone members and a path to the representative node in the region

where it belongs for data meant for destinations beyond its coverage.

This mechanism allows the algorithm to reduce routing overhead and aid in efficient routing of data in the

network. The implementation on OMNeT++ which was compared with AntNet, Distributed Genetic Algorithm

(DGA) and Open Shortest Path First (OSPF), focused on energy consumption in routing of data in a wired

network. Beehive outperformed others in most of the simulated scenarios [11].

II. THE BEEADHOC ALGORITHM
This was inspired by the foraging behaviour of honey bees and its implementation is to optimise the routing

of data in a mobile Ad Hoc network. There are several existing algorithms such as DSR, DSDV, AODV;

designed for this type of environment and their respective performances would be compared.

BeeAdhoc routing algorithm is a reactive type of routing protocol in that paths/routes to a destination are

only discovered when there is a data to be delivered to that destination. It also uses the source routing options of

IP, in that the paths to a destination are embedded in the header of the packet which get reviewed as the packet

traverses the network.

This is implemented as a layer 3 protocol of the ISO/OSI standard and the idea of abstraction in the

standard makes the algorithm independent of lower or upper layer in addition to the ease of integration over any

platform. All nodes in its implementation are considered to be a hive and packets sent out also to be a bee. The

major mechanisms of the algorithm are the entrance, packing floor and the dance floor and also three major

types of bees are implemented.

2.1. Bee Types

The bee names are absorbed from the real honey bee colony; actually they refer to control packets and other

types used in the implementation. Three types of bees are used in this algorithm. These are the scout (for route

discovery), the forager (to transport data) and the packer (for data collection from the upper layer).

Optimal Data Collection from a Network using Probability Collectives (Swarm Based)

www.ijres.org 51 | Page

Packers: These are created at the packing floor whenever a packet/data arrives from the upper transport

layer (TCP/UDP) to hold the data pending when a forager to the desired destination is found. They remain in the

packing floor throughout their life time and are deleted immediately once the appropriate forager is found.

Scouts: This is similar to the route request packet used in other algorithms; it is also created in the packing

floor whenever a route to a destination is not available and it‟s used to find routes. It is a broadcast type of

packet to all neighbours, it has in the header the destination address and time to live (TTL) which are part of

regular IP header. The header option of BeeAdHoc also appends the route traversed so far and an ID to uniquely

identify each scout. All nodes that receives the scout will rebroadcast it if the destination address does not match

their address and also if the TTL has not expired. Once the scout arrives at the destination, it will be sent back to

the source using the reverse route. At the source it will be passed to the dance floor where a forager will be

created from it.

Foragers: These are the bees that transport actual packets in the network from the source node‟s hive to the

destination node‟s hive. They are kept in the dance floor. They also have an age tag attached and basically this

tag is used to note the age of the forager and this is decreased anytime it transport data until it gets to zero when

a new paths/routes will have to be requested if there‟s need to send data to the destination.

2.2. Algorithm Design and Operations

As stated earlier, each node on the network is seen as a bee hive through which the routing information is

generated and stored. Again, the nodes are independent of one another in that no control packets are exchanged

for routing to be possible.

The design focused on the ISO/OSI layer 3 (network layer) and as such interfaces to the upper transport and

lower MAC layer were part of the design. The packing floor interacts with the upper layer while the entrance

interacts with the lower layer. In between these two is the dance floor which contains the routing information.

The architectural overview is illustrated in Fig. 1.

III. ALGORITHM IMPLEMENTATION IN NS-2.34
As earlier stated, the algorithm here was based on the design from [12]; the focus area in the work discussed

there was on energy consumption of various algorithms in comparison with BeeAdhoc. The authors of the work

in [12] were contacted and the source code for their implementation was made available for use. Their

implementation was on NS-2.29, an older version compared to NS-2.34 used in this work.

On receipt of the source code, there were several compilation errors into NS-2.34 during the integration

stage; these were due to the upgrade in the library files present in NS-2.34 compared to NS-2.29. There were

also different types of special bees (throughput bee, energy bee, swarm bee etc) declared to enhance its energy

consumption which was the focus area of their work.

Fig. 1: Architecture Overview

In this implementation, all the library issues that gave compilation errors were resolved and missing

variables clearly identified and declared appropriately. Also the special bees usage was disabled to change the

focus area of the work presented here.

For this implementation, some of the simulator files need to be modified slightly in other for the algorithm

to be integrated. The modification involves in most cases a line of code defining the algorithm‟s variable and at

most a function section.

For the success of this research, we were able to integrate the BeeAdhoc algorithm in the chosen

simulator with appropriate modification to make it work. All the modifications made to the simulator files were

Optimal Data Collection from a Network using Probability Collectives (Swarm Based)

www.ijres.org 52 | Page

written by us and also the library issues mentioned above was debugged by us. A shell script was written to

automate the multiple runs of simulations of different scenarios. I also wrote a java program to parse the trace

files for analysis. The program was made to compute the throughput, end-to-end delay and routing overhead for

the different scenarios in a .csv file which was then used to generate all the graphs. Fig. 2 shows the flow of

event that led to the completion of this project.

Fig. 2: Project Tasks

3.1. Simulation Scenarios

The Beeadhoc algorithm was evaluated in NS-2.34 and results compared with other state-of-the-art routing

algorithms that already exist in the simulator. This section explains briefly the simulation scenarios,

performance metric and results.

The type of traffic that was simulated was Constant Bit Rate (CBR) over User Datagram Protocol (UDP).

The choice of this was made to aid in determining the actual routing packets used instead of using Transmission

Control Protocol (TCP) which could increase the overhead against our wish.

The random waypoint model feature of the simulator was used to generate node and their properties. The

nodes were generated with an initial random position and the mobility throughout the simulation run time was

made random as their respective position switching was randomised.

The simulator has several topology types that could be used; but for this work the simulation topology was

a flat grid that provides a flat surface area, which implies that the surface was free of any object that could

negatively affect the radio transmission power of the nodes. The topology area was made up of a square of 1000

x 1000 m
2
for all simulation.

Apart from the scenarios where the number of nodes were varied and mobility speed, all other experiments

have the same number of nodes and uses same mobility speed. The nodes moves randomly to a different

location from the initial point at a fixed speed throughout the experiment and stay there based on the pause time

specified and then moves again.

The wireless radio antenna used was an Omni-antenna (transmitting to all direction) and it was centrally

place on the node with a height of 1.5m and the wireless technology adopted was the WaveLan DSSS which

operates with 915MHz frequency. This decision was also made because WaveLan operates only with one

frequency as stated above which ensures equity in radio transmission frequency of nodes with the same power.

Other parameters as used for the experimental simulations are as shown in Table 1.

It is worthy of note to say that different protocols were examined along with the Beeadhoc algorithm and in

few simulations DSDV and DSR were not used. This was because DSDV and DSR protocols were part of the

oldest available in the simulator and as such it gave segmentation faults during some of the simulations.

The fault was traced to NS-2.34 file named as ns-packet.tcl located in ns-lib and common folders. Further

study showed that the mentioned file has the packets structures of most algorithms defined in it; and modifying

it could affect the performance of other algorithms or even cause compilation error in NS-2.34.

The observed effect of the segmentation faults on the two algorithms (DSDV and DSR) was basically

transmission of lower number of packets than expected in some instances. This effect was seen to have partial

effect on the comparison; thereby all instances where the segmentation fault was observed were deleted from the

data taken for analysis and another instance ran to bring up the samples to the same number with other

algorithms.

3.2. Metrics for Performance Evaluation

Properties of the simulation that was used to evaluate performance of the various algorithms in comparison

to one another were defined to include throughput, end-to-end delay and routing overhead.

BeeAdhoc

Routing

Algorithm

Network

Simulator

NS-2.34

Shell

Script

Trace

File

 .tr

Result

.csv

Java

Program

Result

Graphs

Scenarios

and TCL

Scripts

Optimal Data Collection from a Network using Probability Collectives (Swarm Based)

www.ijres.org 53 | Page

Throughput: This was defined in percentage as the number of received packets to the number of sent packets in

the application layer. The algorithm that has got the highest percentage value is rated the best performed one for

that particular scenario.

End-to-End Delay: This was defined as the average of the time it takes all sent packets to be received at the

destination. This time is stamped at the moment the packet leaves the sender to include all the delay in the queue

up to when it gets to the destination. Only the times spent by the received packets are considered and the total

sum of the time spent by all received packet is divided by the number of received packets. The algorithm with

the least time is evaluated to be the best performing one for the particular scenario.

Table 1: Simulation Parameters

Parameter Value

Protocols Examined AOMDV, BeeAdHoc, DSDV and DSR

Channel Used Wireless Channel

Network Interface Wireless Physical

MAC Type IEEE 802.11

Queue Type Drop-Tail or Priority Queue

Link Layer Type Used ARP to resolve IP addresses to MAC address

Antenna Type Omni Antenna

Default Wireless Physical Setting 914MHz Lucent WaveLAN DSSS

Queue Length 50 Packets

Number of Nodes 10, 20, 30, 40 and 50

Maximum Area 1000 X 1000 meters

Simulation Time Maximum of 20s

Pause Time 5s

Node Mobility Speed 20, 40, 60, 80, and 100 meters/s

Node Transmitting Range 150, 200, 250, 300 and 350 meters

Packet Size 512 Kb/s

Propagation Type Two Ray Ground

Node Movement Model Random Way Point

Routing Overhead: This was defined as the number of packets generated at the network layer which was tagged

RTR packets in ensuring that the packets get to the destination. This packets include route request, scouts etc.

that are used to find routes. The algorithm with the minimum number of routing overhead is rated the best

performing one again in the particular scenario.

IV. RESULTS ANALYSIS
In the simulated experiments, the traffic type explained above was setup. The source node was made

constant for all experiments and the destination nodes were randomized in multiple runs.

A shell (bash) script was used to aid in automation of multiple runs of each of the simulated scenarios and

generated the required trace files for analysis.

A java program was used to analyse the trace files generated from each runs of the respective scenarios. It

calculated the total number of sent packets, received packets, routing overhead, and the average end-to-end

delay and create a .csv file in which all the values were written from which the graphs were generated.

The points on the graphs are average of multiple runs ranging from 10 – 20 in most cases; this is aimed at

finding out the stochastic behaviour of the algorithm or environment.

4.1 Varying Number of Nodes

In this experiment, the numbers of nodes were varied from between 10 – 50 in different simulations, aimed

at observing the behaviour of the algorithms as the number of nodes increases with reference to the performance

metrics. It was expected that the routing overhead will increase and possibly with increased end-to-end delay as

the number nodes increases but the throughput was envisaged not to be affected by this variation.

From Fig. 3, it was observed that the throughput of Beeadhoc, DSR and AOMDV increases steadily on the

average as the number of nodes increases. DSDV had the worst performance in this regards.

The routing overhead are the control packets used by the algorithms to find routes/paths to the required

destination as based on their working mechanisms. It was expected that the routing overheads would increase as

the number of nodes increases as there would be more nodes to communicate with in the flooding processes.

Fig.4 shows the behaviour of the respective algorithms. All had experienced an increase in the routing

Optimal Data Collection from a Network using Probability Collectives (Swarm Based)

www.ijres.org 54 | Page

overheads, but DSR and DSDV had the best performance in this case. Beeadhoc also outperforms AOMDV on

the average.

Fig.3: Number of Nodes Vs Throughput

Fig.4: Number of Nodes Vs Routing Overhead

Fig.5: Number of Nodes Vs End-to-End Delay

Fig. 5 shows the behaviours of the algorithms when the average time it takes packets to be delivered at the

destinations was considered. Beeadhoc competed well with other state-of-the-art algorithms, though the time is

seen to increase as the number of nodes increases as expected at a steady pace. DSDV has an opposite behaviour

as the time reduces as the number of nodes increases, this could be tied down to the fact that it already stored

multiple routes to all nodes at the beginning and can easily switch on which paths to use as soon as there are

packets to be sent out instead of just searching for the routes as others would do.

4.2 Varying Nodes Mobility Speed

Node mobility changes network topology frequently and the aim of this experiment is to observe the

behaviour of the algorithms to changing topology. This is aimed at studying the adaptability of the algorithms.

Ordinarily, it would be expected that the throughput of the algorithms be affected negatively as the mobility

speed increases; this is because the topology changes and more packets would be expected to be dropped.

0

20

40

60

80

100

120

10 20 30 40 50

T
h

ro
u

g
h

p
u

t
(%

)

Number of Nodes (N)

AOMDV BEEADHOC DSDV DSR

0

50

100

150

200

250

300

350

10 20 30 40 50

R
T

R
 O

v
er

h
ea

d
s

(P
ac

k
et

s)

Number of Nodes (N)

AOMDV BEEADHOC DSDV DSR

0

0.02

0.04

0.06

10 20 30 40 50

E
n

d
-E

n
d

 D
el

ay
 (

m
/s

)

Number of Nodes (N)

AOMDV BEEADHOC DSDV DSR

Optimal Data Collection from a Network using Probability Collectives (Swarm Based)

www.ijres.org 55 | Page

All the algorithms exhibit different behaviours in this regards, DSDV was seen not to be stable as it goes up

and down as the speed increases. Beeadhoc is the most adaptive algorithm to topology changes as the speed had

little impact on its throughput. Again, all the algorithms converge to between 18% - 25% when the speed was

80m/s and Beeadhoc and AOMDV was seen to have an improved throughput at higher speed beyond this point

as shown on Fig.6. This was repeated for higher speed to be sure of the reaction and the throughput actually

increases. This could be the instance of the simulator or that the algorithms actually adapts quickly to changes.

Routing overhead was expected to increase as the speed increases because known paths are to change as the

nodes moves around randomly with an increased speed and control packets for route discovery are expected to

increase on the overall.

DSDV seem not affected by this as shown in Fig. 7. Beeadhoc experiences an increased routing overhead as

the nodes mobility speeds increases as expected. AOMDV has a reverse behaviour compared to Beeadhoc, this

again could be tied to the fact that AOMDV uses routing table to store multiple paths to a destination and

alternate paths might be found without having to launch new route discovery control packets.

Fig.6: Node Mobility Vs Throughput

Fig.7: Node Mobility Vs Routing Overhead

End-to-End delay graph in Fig. 8 in comparison with the throughput graph in Fig. 7, it could be deduced

that Beeadhoc delayed the packets longer while it searches for new routes to the destination which gave it an

edge over others in better throughput but made it the worst performed in the delay chat.

Fig.8: Node Mobility Vs End-to-End Delay

4.3 Varying Number of Failed Nodes

Network failure was another way the algorithms adaptability features to network changes was verified. In

these experiments, nodes were randomly disabled from participating in any activity in the network after some

time. The number of failed nodes was varied and the results are shown in Fig. 9.

DSDV had the worst throughput over the range of failed nodes while the reaction of DSR, DSDV and

Beeadhoc competitively decreases along the failed node axis as shown in Fig. 9.

0
20
40
60
80

100

20 40 60 80 100T
h

ro
u

g
h

p
u

t
(%

)

Node Mobility Speed (mtr/s)

AOMDV BEEADHOC DSDV DSR

0

50

100

150

200

20 40 60 80 100

R
T

R
 O

v
er

h
ea

d
s

(P
ac

k
et

s)

Node Mobility (mtr/s)

AOMDV BEEADHOC DSDV DSR

0

0.5

1

1.5

2

20 40 60 80 100

E
n

d
-E

n
d

 D
el

ay
 (

m
/s

)

Node Mobility (mtr/s)

AOMDV BEEADHOC DSDV DSR

Optimal Data Collection from a Network using Probability Collectives (Swarm Based)

www.ijres.org 56 | Page

This was the expected results because the failed nodes might have been actively involved in the routing of

packets before they went down coupled with the nodes mobility which remained constant. This implies the

network topology changing was affected by node failure only in this experiment.

AOMDV was the best performed algorithm in this regards and it maintains a very good throughput before it

eventually decreases when the number of failed nodes increases to 25 and 30 respectively

Fig.9: Network Failure Vs Throughput

4.4. Varying Radio Wireless Transmitting Range

In this experiment the radio transmission range of the nodes was varied, which in turns varies their

respective coverage in the simulated area. The varied transmission range was plotted against throughput and

routing overhead as depicted in Fig. 10 and 11 respectively.

It was expected that the throughput would be poor if the nodes transmission range could not allow them

exchange data as the case with when the transmission range was made 100m as shown in Fig. 10, and that the

effect of the range would not have any significant impact on the throughput once the nodes could communicate

with each other. This was evident from the outcome of Fig. 10; in this, all the algorithms converged at 0%

throughput when the nodes transmission range did not establish a connection between them and a drastic

positive improvement recorded immediately connection was established and this was constant afterwards on the

average for all protocols.

The outcome shown in Fig. 11 was the routing overhead against nodes radio transmission range. As

expected, at smaller coverage area more hops would be required to get to the destination which was randomly

selected and also exhibiting random movement within the simulated area.

This directly implies that more routing control packets would be required at smaller coverage radius which

is expected to reduce as the coverage radius of nodes increases. This assumption was true of Beeadhoc, DSR

displayed a fluctuating behaviour while AOMDV obeyed the assumption partly.

Fig.10: Radio Transmission Range Vs Throughput

0

50

100

150

150 200 250 300 350 400

T
h

ro
u

g
h

p
u

t
(%

)

Tx Range (in meters)

AOMDV BEEADHOC DSR

0

20

40

60

80

100

120

10 15 20 25 30

T
h

ro
u

g
h

p
u

t
(%

)

Network Failure (N)

AOMDV BEEADHOC DSDV DSR

Optimal Data Collection from a Network using Probability Collectives (Swarm Based)

www.ijres.org 57 | Page

Fig.11: Radio Transmission Range Vs Routing Overhead

V. CONCLUSION
In this project, Beeadhoc routing algorithm has been implemented in network simulator NS-2.34 for a

mobile Ad Hoc Network (MANet). Comparisons were made with other state-of-the-art routing algorithms,

varying different features which include radio transmission range, number of nodes, nodes mobility speeds and

number of failed nodes in several of the simulation instances considered.

The metrics used in the evaluation and analysis of the performance of the algorithms were throughput, end-

to-end delay and routing overheads. Optimal data collection from a network using BeeAdhoc Routing

Algorithm was successfully implemented and inferences from the experimental results indicate that: BeeAdhoc

algorithm generated greater throughput than 2 of the 4 existing algorithms (DSDV) when the nodes were

increased, BeeAdhoc algorithm yielded reduced overhead than 2 of the 4 existing algorithms (AOMDV), when

the nodes were increased, BeeAdhoc exhibited an increased End-to-Enddelay as the node number increased,

BeeAdhoc experienced decrease in its throughput as the number of failed nodes increases but still performed

better than DSDV.

Overall, the BeeAdhoc Routing performance was comparable to that of DSR and DSDV in throughput and

overhead but worse in delay. From the results obtained in all simulated experiments, BeeAdhoc could be used

for routing packets in Ad Hoc network whenever interest is on throughput, delay and overheads. This is because

its performance based on those metrics was better and compete reasonably with other algorithms.

REFERENCES
[1] D. H. Wolpert, K. Tumer, An Introduction to Collective Intelligence, Technical Report, NASA ARC-IC-99-63, NASA Ames

Research Centre, 1999.

[2] I. Kroo, Collectives and Complex Systems Design, VKI Lecture Series on Optimisation Methods and Tools for
Multicriteria/Multidisciplinary Design, 2004.

[3] D. H. Wolpert, Collective Intelligence, Computational Intelligence: The Experts Speak, Edited by D.B. Fogel and C. J. Robinson

(IEEE), 2003.
[4] H. A. Mohammed, H. K. Babak, A Distributed Probability Collectives Optimisation Method for Multicast in CDMA Wireless

Data Networks, Proc. 4th IEEE International Symposium on Wireless Communication Systems, Article No. 4392414, pp. 617 –

621, 2007.
[5] A. J. Kulkarni, K. Tai, Probability Collectives: A Distributed Optimisation Approach for Constrained Problems, IEEE Congress

on Evolutionary Computation (CEC), pp. 1 – 8, 2010.

[6] A. J. Kulkarni, K. Tai, Probability Collectives: A Multi-Agent Approach for Solving Combinatorial Optimisation Problems,
Applications of Soft Computing, vol 10, no. 3, pp. 759 – 771, 2010.

[7] A. J. Kulkarni, K. Tai, Probability Collectives for Decentralised, Distributed Optimisation: A Collective Intelligence Approach,

Proc. IEEE International Conference on Systems, Man, and Cybernetics, pp. 1271 – 1275, 2008.
[8] D. Subramanian, P. Druschel, J. Chen, Ants and Reinforcement Learning: A Case Study in Routing in Dynamic Networks,

International Joint Conference on Artificial Intelligence (IJCAI), 1998.

[9] J. Brownlee, Clever Algorithms – Natured Inspired Programming Recipes, 2011
[10] C. E. Perkins and P. Bhagwat, Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers,

ACM-SIGCOMM, 1994.

[11] H. F. Wedde, M. Farooq, and Y. Zhang, BeeHive: An Efficient Fault-Tolerant Routing Algorithm Inspired by Honey Bee
Behaviour, 2004

[12] H. F. Wedde, M. Farooq, T. Pannenbaecker, B. Vogel, C. Mueller, J. Meth and R. Jeruschkat, BeeAdHoc: An Energy Efficient

Routing Algorithm for Mobile Ad Hoc Networks Inspired by Bee Behaviour, In: GECCO ACM, 2005.
[13] T. White, B. Pagurek, D. Deugo, Collective Intelligence and Priority in Networks, IEA/AIE '02 Proceedings of the 15th

International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems:

Developments in Applied Artificial Intelligence, 2002.
[14] J. Kil-Woong, Meta-Heuristic Algorithms for Channel Scheduling Problem in Wireless Sensor Networks, International Journal

of Communication Systems, John Wiley and Sons, Ltd, 2011.

[15] D. H. Wolpert, K. Tumer, J. Frank, Using Collective Intelligence to Route Internet Traffic, Proceedings of the 1998 Conference
on Advances in Neural Information Processing Systems II, 1999.

[16] P. D. Maio, Digital Ecosystems, Collective Intelligence, Ontology and the 2nd Law of Thermodynamics, 2nd IEEE International

Conference on Digital Ecosystems and Technologies (IEEE DEST 2008), pp 144 – 147, 2008.

0

100

200

300

400

150 200 250 300 350 400

R
T

R
 O

v
er

h
ea

d
s

(P
ac

k
et

s)

Tx Range (in meters)

AOMDV BEEADHOC DSR

Optimal Data Collection from a Network using Probability Collectives (Swarm Based)

www.ijres.org 58 | Page

[17] J. A. Boyan, M. L. Littman, Packet Routing in Dynamically Changing Networks: A Reinforcement Learning Approach,

Advances in Neural Information Processing Systems vol. 6, pp. 671 – 678, 1994.

[18] C. Chiang, H. Wu, W. Liu, M. Gerla, Routing in Clustered Multihop, Mobile Wireless Networks with Fading Channel,1997.
[19] G. S. Ryder, K. G. Ross, “A Probability Collectives Approach to Weighted Clustering Algorithms for Ad Hoc Networks, Proc.

3rd IASTED International Conference on Communications and Computer Networks, pp. 94 – 99, 2005.

[20] D. S, P. Volf, M. Pechoucek, N. Suri, D. Nicholson, D. Woodhouse, Optimisation-based Collision Avoidance for Cooperating
Airplanes, IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology-Workshops, 2009.

